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Abstract: Characterized by a predominantly agricultural landscape, including rice paddy, agricultural land, and scattered forest, 

the Chrey Bak catchment of the Tonle Sap Lake, Cambodia, is experiencing challenges such as deforestation and land conversion, 

which negatively impact mineral alteration sources, land management, and ecosystems. The current study uses satellite data (Sentinel 

2, Landsat-8 OLI, and ASTER) to detect changes in mineral alteration (i.e., iron oxide and clay) and in land use and land cover 

(LULC) and to examine their relationships with the catchment’s lithology. Sentinel-2 satellite imagery between 2015 and 2022 was 

used to classify LULC changes. The visible and near-infrared (VNIR) and the short-wave infrared (SWIR) bands were used to map 

the iron oxide and clay deposits, thereby reducing the time and cost associated with fieldwork. The results revealed significant LULC 

changes, with a decrease in vegetated areas and an increase in cropland and built-up areas, while remaining unchanged for forested 

areas and water bodies. These changes have direct implications for mineral alteration, as the areas with land conversion (i.e., 

agricultural areas) showed their exposure to mineral-rich areas, particularly those containing iron oxide and clay. This study 

contributes to a qualitative understanding of the relationships between LULC changes across litho-mineral substrates, offering 

insights that can inform sustainable land management practices and mineral exploration efforts in the catchment. 
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1. 1.  INTRODUCTION
1
 

Land use and land cover (LULC) changes are the study of 

land cover dynamics on the Earth's surface by land use (such as 

vegetation, cropland, and built-up area), describing human 

activity, while land cover is to study what covering the surface 

of the Earth, such as forests, wetlands, bare soils, and so on.  This 

is achieved through Earth observation satellites, which study 

LULC changes at different dates to monitor their dynamics [1]. 

Human activities and natural processes can significantly affect 

minerals' physical and chemical properties, impacting ecosystem 

health, rock characteristics, soil fertility, and land management. 

LULC, including forested areas, agricultural lands, and water 

bodies, plays a crucial role in regulating the presence of litho-

minerals, particularly iron oxide and clay, in irrigated 

catchments [2]. In recent years, rapid LULC changes have raised 

concerns about the long-term sustainability of those irrigated 

catchments. As agricultural lands and urban areas expand, 

forests and natural areas are cleared. This leads to an increasing 
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disturbance of the iron oxide and clay's distribution and their 

depletion, these minerals being vital for maintaining soil 

structure [3]. If LULC changes too quickly, it can impact the 

health of the ecosystems [4]. To address this issue, Geographic 

Information Systems (GIS) and remote sensing techniques offer 

a powerful and efficient way to monitor spatiotemporal changes 

in LULC. These techniques allow us to observe large areas and 

investigate correlations between LULC changes and the 

underlying disturbance of the two minerals [5]. Integrating data 

from multispectral sensors, such as those onboard Lansat-8 OLI, 

ASTER, and Sentinel-2 satellites, can help detect mineral 

alteration and the relationships between LULC changes and the 

distribution of iron oxide and clay  [6].Furthermore, it can also 

help to identify potential mining resource sites [6]. This study 

aims to link qualitatively the distribution of iron oxide and clay 

with the LULC changes in the Chrey Bak catchment of the Tonle 

Sap Lake (TSL), Cambodia. 
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2. METHODOLOGY 

2.1 Study area 

The geology of Mainland Southeast Asia comprises 

stratigraphic and intrusive igneous units, highlighting its 

richness in mineral resources [7]. Cambodia, located in 

Indochina's southernmost craton, hosts significant 

mineralization belts like the Truong Son Fold Belt (TSFB), Loei 

Fold Belt (LFB), Dalat-Kratie Belt (DKB), and Sukhothai Belt. 

Granitic magmatism, driven by the Indosinian orogeny, is linked 

to Gondwanaland fragment collisions (Fig. 1).  

The Chrey Bak catchment is approximately 89 kilometers west 

of Phnom Penh, the capital city of Cambodia. This catchment is 

located at the Stueng Boribo, one of the tributaries of the TSL 

watershed. 

The lithology of the catchment is characterized by various 

rock types (JICA, 2002) that significantly influence its mineral 

potential. The iron oxide and clay are rich in deposits near 

dacites, granites, and hornfels, then erosion, transportation by 

weathering (raining, wind), and deposited in the eluvial sand, old 

alluvium, and recent alluvium (Fig. 2). 

2.2. Image analysis 

2.2.1 Image pre-processing 

The Landsat-8 OLI and Terra ASTER images were pre-

processed with ArcGIS 10.8 software in Universal Transverse 

Mercator (UTM) and projected to the World Geodetic System 

(WGS) 84 datum Zone 48N. They were converted to the Top-of-

Atmosphere (TOA) spectral radiance [8], with radiometric 

calibration and atmospheric correction (following this formula: 

REFLECTANT_MULT_BAND × Band) + 

(REFLECTANT_ADD_BAND) / Sin(SUN_ELEVATION). 

The first step in this method was to enhance the spectral 

wavelength response of each iron oxide and clay in ArcGIS (Fig. 

3). The classification of Sentinel-2 images in the present study 

included three steps: pre-processing of the images, training 

sampling manager, and support vector machine (SVM) 

algorithm to obtain final LULC classes. After completing the 

image preprocessing step, training sampling managers were 

chosen to encompass various potential LULC classes. Then, 80 

pixels of training samples for each homogeneous class [9] were 

created to supervise the SVM classification process. 

2.2.2 Sentinel-2 for LULC mapping 

Sentinel-2 is equipped with the Multispectral Instrument 

(MSI), which captures data across 12 spectral bands ranging 

from the visible to the short-wave infrared spectrum, with spatial 

resolutions of up to 10 meters[10]. Sentinel-2 images from 2015 

until 2022 in the catchment were classified using a support 

vector machine (SVM) algorithm. Typically, at least 80 samples 

per class are recommended to provide a reliable basis for 

classification [11]. The SVM algorithm is advantageous for 

handling high-dimensional data and distinguishing between 

classes with clear separations [11]. The analysis utilized the high-

resolution imagery from Sentinel-2 to classify the LULC 

changes into several key categories: forest, vegetation, cropland, 

waterbody, built-up area, and LULC change (Fig. 6) In this study, 

specific bands such as bands 2, 3, 4, and 8 are used due to their 

 
Fig. 1. Map showing tectonic divisions of the Indochina Terrane 

including the mineralization belt of Cambodia Vietnam, Laos, and 

Thailand (modified after [7]). 

 

 

 
Fig. 2.  Geological map of the Chrey Bak catchment, Kampong 

Chhnang province in Cambodia. 
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relevance in monitoring land use and land cover (LULC) 

changes. The primary objectives of Sentinel-2 imagery include 

monitoring agricultural lands, forests, and LULC classification 

[11]. Since Sentinel 2 data is multispectral, highly effective for 

accurately classifying LULC classes [12]. To assess the accuracy 

of the LULC classification, reference data, and high-resolution 

Google Earth imagery were used to create a confusion matrix 

compared with the classified data. This allowed us to calculate 

key accuracy metrics: the overall accuracy, the producer's 

accuracy, the user's accuracy, and the Kappa coefficient. 

Visualize the results to identify misclassification patterns and 

evaluate performance. If necessary, refine the classification by 

adjusting algorithm parameters or updating training data, and 

consider testing model robustness across different data sets [12]. 

2.2.3 Band ratio and principal component analysis  

Band ratio has been one of the most widely used image 

enhancement methods to extract spectral information on any 

rocks and minerals using diagnostic absorption features at 

specific wavelength intervals. Landsat-8 OLI was launched in 

2013 and its images include nine spectral bands, with bands 1 

through 7, 8, and 9 having a spatial resolution of 30 meters [13]. 

In this study, specific bands such as bands 2, 4, 6, and 7 were 

used to observe spectral absorption characteristics across the 

visible and near-infrared (VNIR), shortwave infrared (SWIR), 

and thermal infrared (TIR) wavelength ranges, for detect only in 

2015. These selected bands enhance the detection and analysis 

of geological and mineralogical features. Since the debut of 

Landsat-1 in 1972, satellite remote-sensing imagery has been 

extensively and successfully employed in mineral prospecting  

[13]. Landsat-8 OLI band ratio is used to calculate minerals: Iron 

oxide, with a band ratio of (b4/b2), is associated with mafic 

minerals like limonite, jarosite, hematite, and goethite; clay, with 

a (b6/b7), such as illite, kaolinite, alunite, and montmorillonite.   

The Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) is particularly valuable, as it 

captures emitted and reflected electromagnetic radiation across 

14 spectral bands: visible-near infrared (VNIR), shortwave 

infrared (SWIR), and thermal infrared (TIR). In this study, only 

specific ASTER bands (bands 1, 2, 5, 6, and 7) in 2015 are 

utilized due to their sensitivity to the spectral characteristic of 

minerals. ASTER’s ability to provide comprehensive data on 

surface temperature, emissivity, reflectance, and elevation, 

combined with its reasonable spatial resolution, makes it an 

excellent tool for identifying minerals essential for mineral 

exploration. The band ratio for the mineral ASTER band in iron 

oxide with a band ratio of (b2/b1) absorption is 0.55 and 0.90 μm, 

with a peak near 0.75 μm, indicating a ferric iron abundance [14] 

S. Clay, with a (b5×b7)/(b6)2. Principal Components Analysis 

(PCA) image processing algorithms were used to obtain 

important information on minerals from the processed remote 

sensing datasets [14]. Most rational thematic layers of the 

modification are presented in order (Fig. 3). The Iron oxide from 

the Landsat-8 OLI image intersects with iron oxide from 

ASTER. The clay mineral from Landsat-8 OLI intersects with 

the clay mineral from ASTER. 

2.3 Statistical analysis 

The LULC classes in the irrigated catchment from 2015 to 

2022 were log-transformed before conducting statistical analysis 

with R statistical software. The Pearson coefficient results, with 

p-value < 0.05 level, were considered significantly different. 

3. RESULTS AND DISCUSSION 

 

3.1 Spatial distribution of LULC across the litho-minerals  

 

The lithological analysis identified six rock types: recent 

alluvium (27.20%), old alluvium (26.55%), granites (20.10%), 

eluvial sand (19.87%), diorite (5.14%), and dacites (0.66%) (Fig. 

4). Based on the catchment’s lithology, the old and recent 

alluviums are rich in iron oxide, while the granite and eluvial 

sand contain clay (Fig. 4). After detecting minerals on the six 

rocks of the catchment by using Landsat-8 OLI and Terra 

ASTER images, the result shows the percentage of minerals’ 

distribution with the iron oxide (red color) being 22.63 % and 

clay (blue color) being 12.21 %. The old and recent alluviums 

are rich in iron oxide, and are significant for soil quality, 

 
Fig. 3. The methodological flowchart to study land use and land cover 

(LULC) changes and mineral deposits in the Chrey Bak catchment. 
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particularly in agricultural activities. Additionally, the granites 

and eluvial sand contain clay, which enhances soil fertility, water 

retention, and vegetation growth (Fig. 4 &Fig. 5).  

The study period from 2015 to 2022 reveals the distribution 

of the LULC classes (forest, vegetation, cropland, water body, 

and built-up area). They were observed with the underlying 

litho-minerals, such as dacite, diorite, eluvial sand, granite, old 

alluvium, and recent alluvium (Fig. 6). This analysis explores the 

interactions between the LULC classes and the minerals’ 

distribution (iron oxide and clay), which are the key factors in 

determining LULC changes in the catchment. Clay-rich soils 

typically support specific forests and vegetation, while cropland 

types may not rely on clay minerals [15]⁠. Iron minerals, crucial 

for certain croplands, may not be as critical for vegetation [16].  

Cropland ranges from 47.14% to 64.07%, with an average of 

57.32% and a standard deviation of 6.43%. This growth 

corresponds with the extensive presence of iron oxide in the old 

and recent alluviums, which increases agricultural productivity 

in the catchment over the years. The vegetation ranges between 

19.07% and 37.50%, averaging 25.61% with a standard 

deviation of 7.22%; This primarily affects areas underlain by 

clay-rich granites and eluvial sand as the result of agriculture 

activities [17]. Similarly, the forest shows a more stable trend, 

ranging from 9.60% to 17.09% and averaging 13.38% with a 

standard deviation of 2.23%, primarily located in regions with 

clay minerals, which are increasingly threatened by agricultural 

expansion and urban development [18]. The built-up area ranges 

from 1.67% to 4.31% with an average of 2.94% and a standard 

deviation of 0.88%, reflecting urbanization and infrastructure 

growth [19]. Lastly, water bodies display high variability, 

ranging from 0.25% to 1.94%, averaging 0.75% with a standard 

deviation of 0.58%, reflecting the impacts of seasonal change 

and human interventions in water management (Fig. 6) [20]. 

The lithology in dacite shows vegetation predominance, 

with gradual increases in cropland and built-up areas. Forest 

cover is minimal due to less fertile soil conditions for agriculture 

[21]. In diorite, cropland is dominant, with a notable increase in 

built-up areas, particularly near infrastructure [21]. In eluvial 

sand, cropland remains dominant, with a slight reduction in 

forest cover and minimal growth in built-up areas. High iron 

oxide content drives agricultural expansion, especially in rice 

paddies [22]. In granites, forests and vegetation are more 

abundant, while cropland is secondary. The rich clay content 

supports forest growth, limiting agricultural and urban expansion 

[21]. In old alluvium, cropland consistently dominates, with 

slight increases in built-up areas. Iron oxide presence supports 

agricultural development, particularly for rice fields [22]. In 

recent alluvium, Cropland is the primary land use, with minimal 

growth in built-up areas. Rich in iron oxide, it supports extensive 

agricultural development, with minimal forest areas and 

moderate vegetation cover [22]. 

 

3.2 Time Series of LULC dynamics and their relationships 

The LULC dynamics from 2015 to 2022 reveal significant 

changes in catchment due to deforestation, agriculture, and 

urbanization (Fig. 6&Fig. 7). Cropland increases, due to 

deforestation and land conversion for agriculture as shown in 

other studies, are the major factors. According to the FAO, 

agricultural expansion accounts for nearly 90% of global 

deforestation [16]. In (Table 1), forest cover shows correlations 

with agriculture, particularly cropland (r = -0.86, p < 0.0001), 

indicating that increasing agricultural activity might be related to 

deforestation. This result coincides with studies indicating that 

agricultural expansion is a major driver of deforestation [35], 

[37].  Forest and water bodies correlate (r = -0.67, p < 0.01), 

suggesting a spatial separation due to land use pressures near 

water resources impacted because ponds or ravines were filled 

by sheet erosion [32]⁠. Forest and built-up areas also show a 

significant correlation (r = -0.95, p < 0.0001), highlighting the 

negative impact of urbanization on forests, as a forest is often the 

first to be cleared for residential, commercial, or industrial 

development [45]. Vegetation decreases are often due to land 

conversion for agriculture or urbanization and agricultural land 

conversion is a major driver of forest loss [23].  

 
Fig. 4. The proportion of rock types in the Chrey Bak catchment. 

 

 
Fig. 5. The data percentage of minerals (iron oxide and clay) in the 

Chrey Bak catchment. 

 
 



Pov et al./Techno-Science Research Journal V13 (3) (2025) 44-51 

48 

 

 

 
Fig. 6. Maps of LULC distribution in the Chrey Bak catchment from 2015 to 2022. 
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An increase in built-up areas indicates ongoing urbanization and 

infrastructure development, contributing to the reduction in 

vegetation cover and the expansion of agricultural land and 

urbanization [24], and this correlation was also seen in this study 

The decrease in the forest cover exposes underlying litho-

minerals such as iron oxide and clay, increasing their visibility 

and potentially leading to a decline in clay content due to the loss 

of organic matter affecting soil structure [25], [26]. The 

significant drop in vegetation reduces soil protection and affects 

clay minerals, essential for maintaining soil fertility. Cropland 

and water body (r = 0.55, p < 0.01) show that agricultural 

activities are often concentrated near water bodies, critical for 

irrigation and crop production, especially during dry seasons or 

low rainfall periods [25]⁠. Cropland and built-up areas (r = 0.85, 

p < 0.0001) and water bodies with built-up areas (r = 0.6, p < 

0.001) indicate that croplands are often found near or within 

expanding urban areas, where farming is conducted on the 

outskirts of cities to supply urban markets [30]. Alternatively, 

this might reflect the conversion of agricultural lands into 

urbanization as cities grow [31]⁠. The increase in cropland 

involves significant soil disturbance, revealing and 

concentrating iron oxides, which improve soil conditions for 

agriculture [15]. While, the expansion of built-up areas involves 

considerable land conversion, exposing underlying minerals 

such as iron oxide and clay, and disrupting natural mineral 

deposit patterns [27], [28]. Water and built-up areas have a 

moderate correlation (r = 0.6, p < 0.001), driven by the need for 

water in agricultural activities and infrastructure development 

[32]⁠. The slight increase in water body cover affects sediment 

transport and deposition patterns, influencing mineral 

distribution in adjacent catchment. Moreover, correlations 

between vegetation and other classes, such as cropland, water 

bodies, and built-up areas, have occurred on clay and iron oxide.  

 

 

 

 

 
Fig. 7. Time Series of LULC from 2015 to 2022 
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Table 1. Pearson’s correlation between LULC classes 

 

 
Forest Vegetation Crop Land Water Body Built-up Area 

Forest 1 0.744 0.000 0.003 0.000 

Vegetation 0.09 1 0.062 0.805 0.434 

Crop Land -0.86**** -0.45 1 0.018 0.000 

Water Body -0.67** 0.06 0.55** 1 0.008 

Built-up Area -0.95**** -0.2 0.85**** 0.6*** 1 

The stars denote the significance levels of the correlation between independent variables: ****p-value <0.0001, ***p-value <0.001, 

**p-value <0.01, and *p-value <0.05.

4. CONCLUSION   

This study has demonstrated the changes in land use and 

land cover (LULC) distribution associated with litho-mineral 

alteration in the Chrey Bak catchment. The study reveals that 

land conversion (from forest to agriculture) and urbanization 

have increased exposure to mineral-rich zones, particularly those 

containing iron oxide and clay.  The current study offers insights 

into the distribution of LULC classes and their relationships 

across the litho-mineral alteration, with implications for the 

sustainable management of land cover resources and the Tonle 

Sap ecosystems. It is crucial for sustainable land management 

and mineral resource planning. 
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