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Abstract: Characterized by a predominantly agricultural landscape, including rice paddy, agricultural land, and scattered forest,
the Chrey Bak catchment of the Tonle Sap Lake, Cambodia, is experiencing challenges such as deforestation and land conversion,
which negatively impact mineral alteration sources, land management, and ecosystems. The current study uses satellite data (Sentinel
2, Landsat-8 OLI, and ASTER) to detect changes in mineral alteration (i.e., iron oxide and clay) and in land use and land cover
(LULC) and to examine their relationships with the catchment’s lithology. Sentinel-2 satellite imagery between 2015 and 2022 was
used to classify LULC changes. The visible and near-infrared (VNIR) and the short-wave infrared (SWIR) bands were used to map
the iron oxide and clay deposits, thereby reducing the time and cost associated with fieldwork. The results revealed significant LULC
changes, with a decrease in vegetated areas and an increase in cropland and built-up areas, while remaining unchanged for forested
areas and water bodies. These changes have direct implications for mineral alteration, as the areas with land conversion (i.e.,
agricultural areas) showed their exposure to mineral-rich areas, particularly those containing iron oxide and clay. This study
contributes to a qualitative understanding of the relationships between LULC changes across litho-mineral substrates, offering
insights that can inform sustainable land management practices and mineral exploration efforts in the catchment.
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1. INTRODUCTION

Land use and land cover (LULC) changes are the study of
land cover dynamics on the Earth's surface by land use (such as
vegetation, cropland, and built-up area), describing human
activity, while land cover is to study what covering the surface
of the Earth, such as forests, wetlands, bare soils, and so on. This
is achieved through Earth observation satellites, which study
LULC changes at different dates to monitor their dynamics [1].
Human activities and natural processes can significantly affect
minerals' physical and chemical properties, impacting ecosystem
health, rock characteristics, soil fertility, and land management.
LULC, including forested areas, agricultural lands, and water
bodies, plays a crucial role in regulating the presence of litho-
minerals, particularly iron oxide and clay, in irrigated
catchments [2]. In recent years, rapid LULC changes have raised
concerns about the long-term sustainability of those irrigated
catchments. As agricultural lands and urban areas expand,
forests and natural areas are cleared. This leads to an increasing
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disturbance of the iron oxide and clay's distribution and their
depletion, these minerals being vital for maintaining soil
structure [3]. If LULC changes too quickly, it can impact the
health of the ecosystems [4]. To address this issue, Geographic
Information Systems (GIS) and remote sensing techniques offer
a powerful and efficient way to monitor spatiotemporal changes
in LULC. These techniques allow us to observe large areas and
investigate correlations between LULC changes and the
underlying disturbance of the two minerals [5]. Integrating data
from multispectral sensors, such as those onboard Lansat-8 OLI,
ASTER, and Sentinel-2 satellites, can help detect mineral
alteration and the relationships between LULC changes and the
distribution of iron oxide and clay [6].Furthermore, it can also
help to identify potential mining resource sites [6]. This study
aims to link qualitatively the distribution of iron oxide and clay
with the LULC changes in the Chrey Bak catchment of the Tonle
Sap Lake (TSL), Cambodia.
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2. METHODOLOGY
2.1 Study area

The geology of Mainland Southeast Asia comprises

stratigraphic and intrusive igneous units, highlighting its
richness in mineral resources [7]. Cambodia, located in
Indochina's  southernmost  craton, hosts  significant
mineralization belts like the Truong Son Fold Belt (TSFB), Loei
Fold Belt (LFB), Dalat-Kratie Belt (DKB), and Sukhothai Belt.
Granitic magmatism, driven by the Indosinian orogeny, is linked
to Gondwanaland fragment collisions (Fig. 1).
The Chrey Bak catchment is approximately 89 kilometers west
of Phnom Penh, the capital city of Cambodia. This catchment is
located at the Stueng Boribo, one of the tributaries of the TSL
watershed.
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Fig. 1. Map showing tectonic divisions of the Indochina Terrane
including the mineralization belt of Cambodia Vietnam, Laos, and
Thailand (modified after [7]).

The lithology of the catchment is characterized by various
rock types (JICA, 2002) that significantly influence its mineral
potential. The iron oxide and clay are rich in deposits near
dacites, granites, and hornfels, then erosion, transportation by
weathering (raining, wind), and deposited in the eluvial sand, old
alluvium, and recent alluvium (Fig. 2).

2.2. Image analysis

2.2.1 Image pre-processing
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The Landsat-8 OLI and Terra ASTER images were pre-
processed with ArcGIS 10.8 software in Universal Transverse
Mercator (UTM) and projected to the World Geodetic System
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Fig. 2. Geological map of the Chrey Bak catchment, Kampong
Chhnang province in Cambodia.

(WGS) 84 datum Zone 48N. They were converted to the Top-of-
Atmosphere (TOA) spectral radiance [8], with radiometric
calibration and atmospheric correction (following this formula:
REFLECTANT MULT BAND x Band) +
(REFLECTANT ADD BAND) / Sin(SUN_ELEVATION).
The first step in this method was to enhance the spectral
wavelength response of each iron oxide and clay in ArcGIS (Fig.
3). The classification of Sentinel-2 images in the present study
included three steps: pre-processing of the images, training
sampling manager, and support vector machine (SVM)
algorithm to obtain final LULC classes. After completing the
image preprocessing step, training sampling managers were
chosen to encompass various potential LULC classes. Then, 80
pixels of training samples for each homogeneous class [9] were
created to supervise the SVM classification process.

2.2.2 Sentinel-2 for LULC mapping

Sentinel-2 is equipped with the Multispectral Instrument
(MSI), which captures data across 12 spectral bands ranging
from the visible to the short-wave infrared spectrum, with spatial
resolutions of up to 10 meters[10]. Sentinel-2 images from 2015
until 2022 in the catchment were classified using a support
vector machine (SVM) algorithm. Typically, at least 80 samples
per class are recommended to provide a reliable basis for
classification [11]. The SVM algorithm is advantageous for
handling high-dimensional data and distinguishing between
classes with clear separations [11]. The analysis utilized the high-
resolution imagery from Sentinel-2 to classify the LULC
changes into several key categories: forest, vegetation, cropland,
waterbody, built-up area, and LULC change (Fig. 6) In this study,
specific bands such as bands 2, 3, 4, and 8 are used due to their



relevance in monitoring land use and land cover (LULC)
changes. The primary objectives of Sentinel-2 imagery include
monitoring agricultural lands, forests, and LULC classification
[11]. Since Sentinel 2 data is multispectral, highly effective for
accurately classifying LULC classes [12]. To assess the accuracy
of the LULC classification, reference data, and high-resolution
Google Earth imagery were used to create a confusion matrix
compared with the classified data. This allowed us to calculate
key accuracy metrics: the overall accuracy, the producer's
accuracy, the user's accuracy, and the Kappa coefficient.
Visualize the results to identify misclassification patterns and
evaluate performance. If necessary, refine the classification by
adjusting algorithm parameters or updating training data, and
consider testing model robustness across different data sets [12].

2.2.3 Band ratio and principal component analysis

Band ratio has been one of the most widely used image
enhancement methods to extract spectral information on any
rocks and minerals using diagnostic absorption features at
specific wavelength intervals. Landsat-8 OLI was launched in
2013 and its images include nine spectral bands, with bands 1
through 7, 8, and 9 having a spatial resolution of 30 meters [13].
In this study, specific bands such as bands 2, 4, 6, and 7 were
used to observe spectral absorption characteristics across the
visible and near-infrared (VNIR), shortwave infrared (SWIR),
and thermal infrared (TIR) wavelength ranges, for detect only in
2015. These selected bands enhance the detection and analysis
of geological and mineralogical features. Since the debut of
Landsat-1 in 1972, satellite remote-sensing imagery has been
extensively and successfully employed in mineral prospecting
[13]. Landsat-8 OLI band ratio is used to calculate minerals: Iron
oxide, with a band ratio of (bs/by), is associated with mafic
minerals like limonite, jarosite, hematite, and goethite; clay, with
a (be/b7), such as illite, kaolinite, alunite, and montmorillonite.

The Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) is particularly valuable, as it
captures emitted and reflected electromagnetic radiation across
14 spectral bands: visible-near infrared (VNIR), shortwave
infrared (SWIR), and thermal infrared (TIR). In this study, only
specific ASTER bands (bands 1, 2, 5, 6, and 7) in 2015 are
utilized due to their sensitivity to the spectral characteristic of
minerals. ASTER’s ability to provide comprehensive data on
surface temperature, emissivity, reflectance, and elevation,
combined with its reasonable spatial resolution, makes it an
excellent tool for identifying minerals essential for mineral
exploration. The band ratio for the mineral ASTER band in iron
oxide with a band ratio of (b2/b;) absorption is 0.55 and 0.90 pm,
with a peak near 0.75 um, indicating a ferric iron abundance [14]
S. Clay, with a (bsxb7)/(bs)?. Principal Components Analysis
(PCA) image processing algorithms were used to obtain
important information on minerals from the processed remote
sensing datasets [14]. Most rational thematic layers of the
modification are presented in order (Fig. 3). The Iron oxide from
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the Landsat-8 OLI image intersects with iron oxide from
ASTER. The clay mineral from Landsat-8 OLI intersects with
the clay mineral from ASTER.

Satellite Images

[ 1
‘ Sentinel-2 Images 2015-2023 ‘ Landsat-8 image 2015 | ‘ ASTER image 2015
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Dynamics of LULC across the Minerals Distribution through
Geographical Information System (GIS) and Remote Sensing

Fig. 3. The methodological flowchart to study land use and land cover
(LULC) changes and mineral deposits in the Chrey Bak catchment.

2.3 Statistical analysis

The LULC classes in the irrigated catchment from 2015 to
2022 were log-transformed before conducting statistical analysis
with R statistical software. The Pearson coefficient results, with
p-value <0.05 level, were considered significantly different.

3. RESULTS AND DISCUSSION
3.1 Spatial distribution of LULC across the litho-minerals

The lithological analysis identified six rock types: recent
alluvium (27.20%), old alluvium (26.55%), granites (20.10%),
eluvial sand (19.87%), diorite (5.14%), and dacites (0.66%) (Fig.
4). Based on the catchment’s lithology, the old and recent
alluviums are rich in iron oxide, while the granite and eluvial
sand contain clay (Fig. 4). After detecting minerals on the six
rocks of the catchment by using Landsat-8 OLI and Terra
ASTER images, the result shows the percentage of minerals’
distribution with the iron oxide (red color) being 22.63 % and
clay (blue color) being 12.21 %. The old and recent alluviums
are rich in iron oxide, and are significant for soil quality,



particularly in agricultural activities. Additionally, the granites
and eluvial sand contain clay, which enhances soil fertility, water
retention, and vegetation growth (Fig. 4 &Fig. 5).

The study period from 2015 to 2022 reveals the distribution
of the LULC classes (forest, vegetation, cropland, water body,

The Chrey Bak catchment
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Fig. 4. The proportion of rock types in the Chrey Bak catchment.
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Fig. 5. The data percentage of minerals (iron oxide and clay) in the
Chrey Bak catchment.
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litho-minerals, such as dacite, diorite, eluvial sand, granite, old
alluvium, and recent alluvium (Fig. 6). This analysis explores the
interactions between the LULC classes and the minerals’
distribution (iron oxide and clay), which are the key factors in
determining LULC changes in the catchment. Clay-rich soils
typically support specific forests and vegetation, while cropland
types may not rely on clay minerals [15]. Iron minerals, crucial
for certain croplands, may not be as critical for vegetation [16].
Cropland ranges from 47.14% to 64.07%, with an average of
57.32% and a standard deviation of 6.43%. This growth
corresponds with the extensive presence of iron oxide in the old
and recent alluviums, which increases agricultural productivity
in the catchment over the years. The vegetation ranges between
19.07% and 37.50%, averaging 25.61% with a standard
deviation of 7.22%; This primarily affects areas underlain by
clay-rich granites and eluvial sand as the result of agriculture
activities [17]. Similarly, the forest shows a more stable trend,
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ranging from 9.60% to 17.09% and averaging 13.38% with a
standard deviation of 2.23%, primarily located in regions with
clay minerals, which are increasingly threatened by agricultural
expansion and urban development [18]. The built-up area ranges
from 1.67% to 4.31% with an average of 2.94% and a standard
deviation of 0.88%, reflecting urbanization and infrastructure
growth [19]. Lastly, water bodies display high variability,
ranging from 0.25% to 1.94%, averaging 0.75% with a standard
deviation of 0.58%, reflecting the impacts of seasonal change
and human interventions in water management (Fig. 6) [20].

The lithology in dacite shows vegetation predominance,
with gradual increases in cropland and built-up areas. Forest
cover is minimal due to less fertile soil conditions for agriculture
[21]. In diorite, cropland is dominant, with a notable increase in
built-up areas, particularly near infrastructure [21]. In eluvial
sand, cropland remains dominant, with a slight reduction in
forest cover and minimal growth in built-up areas. High iron
oxide content drives agricultural expansion, especially in rice
paddies [22]. In granites, forests and vegetation are more
abundant, while cropland is secondary. The rich clay content
supports forest growth, limiting agricultural and urban expansion
[21]. In old alluvium, cropland consistently dominates, with
slight increases in built-up areas. Iron oxide presence supports
agricultural development, particularly for rice fields [22]. In
recent alluvium, Cropland is the primary land use, with minimal
growth in built-up areas. Rich in iron oxide, it supports extensive
agricultural development, with minimal forest areas and
moderate vegetation cover [22].

3.2 Time Series of LULC dynamics and their relationships

The LULC dynamics from 2015 to 2022 reveal significant
changes in catchment due to deforestation, agriculture, and
urbanization (Fig. 6&Fig. 7). Cropland increases, due to
deforestation and land conversion for agriculture as shown in
other studies, are the major factors. According to the FAO,
agricultural expansion accounts for nearly 90% of global
deforestation [16]. In (Table 1), forest cover shows correlations
with agriculture, particularly cropland (r = -0.86, p < 0.0001),
indicating that increasing agricultural activity might be related to
deforestation. This result coincides with studies indicating that
agricultural expansion is a major driver of deforestation [35],
[37]. Forest and water bodies correlate (r = -0.67, p < 0.01),
suggesting a spatial separation due to land use pressures near
water resources impacted because ponds or ravines were filled
by sheet erosion [32]. Forest and built-up areas also show a
significant correlation (r = -0.95, p < 0.0001), highlighting the
negative impact of urbanization on forests, as a forest is often the
first to be cleared for residential, commercial, or industrial
development [45]. Vegetation decreases are often due to land
conversion for agriculture or urbanization and agricultural land
conversion is a major driver of forest loss [23].
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Fig. 6. Maps of LULC distribution in the Chrey Bak catchment from 2015 to 2022.
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Table 1. Pearson’s correlation between LULC classes

Pov et al./Techno-Science Research Journal V13 (3) (2025) 44-51

Forest Vegetation Crop Land Water Body Built-up Area
Forest 1
Vegetation 0.09 1
Crop Land -0.86%*** -0.45 1
Water Body -0.67%* 0.06 0.55%* 1
Built-up Area -0.95%*** -0.2 0.85%*** 0.6%** 1

The stars denote the significance levels of the correlation between independent variables: ****p-value <0.0001, ***p-value <0.001,

**p-value <0.01, and *p-value <0.05.
4. CONCLUSION

This study has demonstrated the changes in land use and
land cover (LULC) distribution associated with litho-mineral
alteration in the Chrey Bak catchment. The study reveals that
land conversion (from forest to agriculture) and urbanization
have increased exposure to mineral-rich zones, particularly those
containing iron oxide and clay. The current study offers insights
into the distribution of LULC classes and their relationships
across the litho-mineral alteration, with implications for the
sustainable management of land cover resources and the Tonle
Sap ecosystems. It is crucial for sustainable land management
and mineral resource planning.
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